Efektivitas Antibakteri Senyawa Kurkumin terhadap Foodborne Bacteria: Tinjauan Curcuma longa untuk Mengatasi Resistensi Antibiotik

  • Anak Agung Ayu Dewi Sekarini Universitas Padjadjaran
  • Ita Krissanti
  • Mas Rizky A. A. Syamsunarno
Keywords: Turmeric, Curcuma longa, Curcumin, Antibacterial, Foodborne bacteria


Antibiotic resistance has negatively impacted the food safety with increasing number of resistant foodborne bacteria, especially foods from farm animals. Turmeric or Curcuma longa has curcumin as its main active component, which is known to have wide range biological activities and low toxicity. Curcumin shows better antibacterial effectiveness than C. longa extract in vitro and in vivo studies, so that has big potential as an alternative antibacterial because of its inexpensiveness, easy to find, and safe to use. However, curcumin is hydrophobic, that makes it hard to dissolve in the body, thus it needs other formulation to enhance its bioavailability. This review discusses the antibacterial activity of curcumin against foodborne bacteria including various formulations, mechanisms, and the toxicity of curcumin.


[1] M. Usui et al., 2014. Antimicrobial susceptibility of indicator bacteria isolated from chickens in Southeast Asian countries (Vietnam, Indonesia and Thailand), J. Vet. Med. Sci., vol. 76, no. 5, pp. 685–692.

[2] I. Chantziaras, F. Boyen, B. Callens, and J. Dewulf, 2014. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries, J. Antimicrob. Chemother., vol. 69, no. 3, pp. 827–834.

[3] A. Kaesbohrer, A. Schroeter, B. A. Tenhagen, K. Alt, B. Guerra, and B. Appel, 2012. Emerging antimicrobial resistance in commensal escherichia coli with public health relevance, Zoonoses Public Health, vol. 59, no. SUPPL.2, pp. 158–165.

[4] P. C. Collignon et al., 2016. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies to Control Antimicrobial Resistance from Food Animal Production, Clin. Infect. Dis., vol. 63, no. 8, pp. 1087–1093.

[5] C. Kirchhelle, 2018. Pharming animals: a global history of antibiotics in food production (1935–2017), Palgrave Commun., vol. 4, no. 1.

[6] A. Ikpeama, G. I. Onwuka, and C. Nwankwo, 2014. Nutritional composition of tumeric (Curcuma longa) and its antimicrobial properties, Int. J. Sci. Eng. Res., vol. 5, no. 10, pp. 1085–1089.

[7] S. Naz, S. Jabeen, S. Ilyas, F. Manzoor, F. Aslam, and A. Ali, 2010. Antibacterial activity of Curcuma longa varieties against different strains of bacteria, Pakistan J. Bot., vol. 42, no. 1, pp. 455–462.

[8] J. Chen, N. Xia, J. Zhao, J. Chen, and R. J. Henny, 2013. Chromosome numbers and ploidy levels of Chinese Curcuma species, HortScience, vol. 48, no. 5, pp. 525–530.

[9] S. M. Ghoreishian, L. Maleknia, H. Mirzapour, and M. Norouzi, 2013. Antibacterial properties and color fastness of silk fabric dyed with turmeric extract, Fibers Polym., vol. 14, no. 2, pp. 201–207.

[10] H. Hayakawa, Y. Minaniya, K. Ito, Y. Yamamoto, and T. Fukuda, 2011. Difference of Curcumin Content in Curcuma longa L. (Zingiberaceae) Caused by Hybridization with Other Curcuma Species, Am. J. Plant Sci., vol. 02, no. 02, pp. 111–119.

[11] D. S. Sogi, S. Sharma, D. P. S. Oberoi, and I. A. Wani, 2010. Effect of extraction parameters on curcumin yield from turmeric, J. Food Sci. Technol., vol. 47, no. 3, pp. 300–304.

[12] Bhawana, R. K. Basniwal, H. S. Buttar, V. K. Jain, and N. Jain, 2011. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study, J. Agric. Food Chem., vol. 59, no. 5, pp. 2056–2061.

[13] V. Kant, A. Gopal, N. N. Pathak, P. Kumar, S. K. Tandan, and D. Kumar, 2014. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats, Int. Immunopharmacol., vol. 20, no. 2, pp. 322–330.

[14] R. Sabra, N. Billa, and C. J. Roberts, 2018. An augmented delivery of the anticancer agent, curcumin, to the colon, React. Funct. Polym., vol. 123, no. 2017, pp. 54–60.

[15] S. Chuengsamarn, S. Rattanamongkolgul, R. Luechapudiporn, C. Phisalaphong, and S. Jirawatnotai, 2012. Curcumin extract for prevention of type 2 diabetes, Diabetes Care, vol. 35, no. 11, pp. 2121–2127.

[16] D. C. Kim, S. K. Ku, and J. S. Bae, 2012. Anticoagulant activities of curcumin and its derivative, BMB Rep., vol. 45, no. 4, pp. 221–226.

[17] L. L. Hurley, L. Akinfiresoye, E. Nwulia, A. Kamiya, A. A. Kulkarni, and Y. Tizabi, 2013. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF, Behav. Brain Res., vol. 239, no. 1, pp. 27–30.

[18] H. Gunes, D. Gulen, R. Mutlu, A. Gumus, T. Tas, and A. E. Topkaya, 2016. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study, Toxicol. Ind. Health, vol. 32, no. 2, pp. 246–250.

[19] P. Dadhaniya et al., 2011. Safety assessment of a solid lipid curcumin particle preparation: Acute and subchronic toxicity studies, Food Chem. Toxicol., vol. 49, no. 8, pp. 1834–1842.

[20] W. Prakatthagomol, J. Sirithunyalug, and S. Okonogi, 2012. Comparison of antibacterial activity against food-borne bacteria of Alpinia galanga, Curcuma longa, and Zingiber cassumunar, Chiang Mai Univ. J. Nat. Sci., vol. 11, no. 2, pp. 177–186.

[21] N. F. Tanih, E. Sekwadi, R. N. Ndip, and P. O. Bessong, 2015. Detection of pathogenic Escherichia coli and Staphylococcus aureus from cattle and pigs slaughtered in abattoirs in Vhembe District, South Africa, Sci. World J., vol. 2015.

[22] M. A. Abdou, N. M. Awny, and A. A. E. M. Abozeid, 2012. Prevalence of toxicogenic bacteria in some foods and detection of Bacillus cereus and Staphylococcus aureus enterotoxin genes using multiplex PCR, Ann. Microbiol., vol. 62, no. 2, pp. 569–580.

[23] K. Infante, R. Chowdhury, R. Nimmanapalli, and G. Reddy, 2014. Antimicrobial Activity of Curcumin Against Food-Borne Pathogens, Vedic Res. Int. Biol. Med. Chem., vol. 2, no. 1, p. 12.

[24] J. P. Folster et al., 2012. Characterization of extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009, Foodborne Pathog. Dis., vol. 9, no. 7, pp. 638–645.

[25] S. S. Altunatmaz, F. Y. Aksu, G. Issa, B. B. Kahraman, D. D. Altiner, and S. K. B. Buyukunal, 2016. Antimicrobial effects of curcumin against L. monocytogenes, S. aureus, S. Typhimurium and E. coli O157: H7 pathogens in minced meat, Vet. Med. (Praha)., vol. 61, no. 5, pp. 256–262.

[26] S. Thakur et al., 2010. Antimicrobial resistance, virulence, and genotypic profile comparison of campylobacter jejuni and campylobacter coli isolated from humans and retail meats, Foodborne Pathog. Dis., vol. 7, no. 7, pp. 835–844,

[27] C. B. Penha et al., 2017. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin, LWT - Food Sci. Technol., vol. 76, pp. 198–202.

[28] A. M. Ahmed and T. Shimamoto, 2014. Isolation and molecular characterization of Salmonella enterica, Escherichia coli O157: H7 and Shigella spp. from meat and dairy products in Egypt, Int. J. Food Microbiol., vol. 168–169, pp. 57–62.

[29] M. M. A. Aly and N. M. Gumgumjee, 2011. Antimicrobial efficacy of Rheum palmatum, Curcuma longa and Alpinia officinarum extracts against some pathogenic microorganisms, African J. Biotechnol., vol. 10, no. 56, pp. 12058–12063.

[30] S. Rawat, 2015. Turmeric Extracts on the Antimicrobial Activity of, vol. 6, no. 2, pp. 60–65.

[31] R. K. Pundir and P. Jain, 2010. Comparative Studies on the Antimicrobial Activity of Black Pepper (Piper Nigrum) and Turmeric (Curcuma Longa) Extracts, Int. J. Appl. Biol. Pharm. Technol., vol. 1, no. 2, p. p.173-203.

[32] E. W. Chan, V. P. N. Ng, V. V. T. Tan, and Y. Y. Low, 2011. Antioxidant and antibacterial properties of Alpinia galanga, Curcuma longa, and Etlingera elatior (Zingiberaceae), Pharmacogn. J., vol. 3, no. 22, pp. 54–61.

[33] G. Onivogui, R. Letsididi, M. Diaby, L. Wang, and Y. Song, 2016. Influence of extraction solvents on antioxidant and antimicrobial activities of the pulp and seed of Anisophyllea laurina R. Br. ex Sabine fruits, Asian Pac. J. Trop. Biomed., vol. 6, no. 1, pp. 20–25.

[34] K. Bacon, R. Boyer, C. Denbow, S. O’Keefe, A. Neilson, and R. Williams, 2017. Evaluation of different solvents to extract antibacterial compounds from jalapeño peppers, Food Sci. Nutr., vol. 5, no. 3, pp. 497–503.

[35] J. M. Chen, G. Y. Zhu, W. T. Xia, and Z. Q. Zhao, 2012. Proteomic analysis of rat retina after methanol intoxication, Toxicology, vol. 293, no. 1–3, pp. 89–96.

[36] N. Gupta, A. A. Sonambekar, S. Daksh, and L. Tomar, 2013. A rare presentation of methanol toxicity, Ann. Indian Acad. Neurol., vol. 16, no. 2, pp. 249–251.

[37] O. Lawhavinit, N. Kongkathip, and B. Kongkathip, 2010. Antimicrobial activity of curcuminoids from Curcuma Longa L. on pathogenic bacteria of shrimp and chicken, Kasetsart J. - Nat. Sci., vol. 44, no. 3, pp. 364–371.

[38] Z. Wang, Y. Jia, and M. Zhang, 2020. Effect of curcumin on the quality properties of millet fresh noodle and its inhibitory mechanism against the isolated spoilage bacteria, Food Sci. Nutr., vol. 8, no. 3, pp. 1451–1460.

[39] S. Jaiswal and P. Mishra, 2018. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells, Med. Microbiol. Immunol., vol. 207, no. 1, pp. 39–53.

[40] S. H. Mun et al., 2013. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus, Phytomedicine, vol. 20, no. 8–9, pp. 714–718.

[41] S. S. Kareem, Sawsan Mohammed Mahmood and N. K. Hindi, 2019. Effects of Curcumin and Silymarin on the Shigella dysenteriae and Campylobacter jejuni In vitro, J. Gastrointest. Cancer.

[42] Yusra and M. B. Muhsin, 2013. Turmeric: Alternative Therapy Against MDR Staphylococcus aureus, Preservative, Shelf-life the Miced Meat, vol. 14, no. 2, pp. 95–102.

[43] B. Chakraborty, A. Nath, H. Saikia, and M. Sengupta, 2014. Bactericidal activity of selected medicinal plants against multidrug resistant bacterial strains from clinical isolates, Asian Pac. J. Trop. Med., vol. 7, no. S1, pp. S435–S441.

[44] N. Mahmood et al., 2019. Antibacterial activities, phytochemical screening and metal analysis of medicinal plants: Traditional recipes used against diarrhea, Antibiotics, vol. 8, no. 4, pp. 1–16.

[45] J. W. Betts, A. S. Sharili, R. M. La Ragione, and D. W. Wareham, 2016. In Vitro Antibacterial Activity of Curcumin-Polymyxin B Combinations against Multidrug-Resistant Bacteria Associated with Traumatic Wound Infections, J. Nat. Prod., vol. 79, no. 6, pp. 1702–1706.

[46] H. Ürüşan and C. Bölükbaşı, 2017. Effects of dietary supplementation levels of turmeric powder(Curcuma longa) on performance, carcass characteristics and gut microflora in broiler chickens, J. Anim. Plant Sci., vol. 27, no. 3, pp. 732–736.

[47] M. Rahmani, A. Golian, H. Kermanshahi, and M. Reza Bassami, 2017. Effects of curcumin or nanocurcumin on blood biochemical parameters, intestinal morphology and microbial population of broiler chickens reared under normal and cold stress conditions, J. Appl. Anim. Res., vol. 2119, no. May, pp. 1–10.

[48] J. Gopal, M. Muthu, and S. Chun, 2015. Bactericidal Property of Macro-, Micro- and Nanocurcumin: An Assessment, Arab. J. Sci. Eng., vol. 41, no. 6, pp. 2087–2093.

[49] A. E. Krausz et al., 2015. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent, Nanomedicine Nanotechnology, Biol. Med., vol. 11, no. 1, pp. 195–206.

[50] A. C. Da Silva et al., 2017. Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots, Food Funct., vol. 8, no. 5, pp. 1851–1858.

[51] D. S. No et al., 2017. Antimicrobial efficacy of curcumin nanoparticles against Listeria monocytogenes is mediated by surface charge, J. Food Saf., vol. 37, no. 4, pp. 1–5.

[52] K. Varaprasad, K. Vimala, S. Ravindra, N. Narayana Reddy, G. Venkata Subba Reddy, and K. Mohana Raju, 2011. Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications, J. Mater. Sci. Mater. Med., vol. 22, no. 8, pp. 1863–1872.

[53] J. Gao and K. R. Matthews, 2020. Effects of the photosensitizer curcumin in inactivating foodborne pathogens on chicken skin, Food Control, vol. 109, no. October 2019, p. 106959.

[54] P. Jourghanian, S. Ghaffari, M. Ardjmand, S. Haghighat, and M. Mohammadnejad, 2016. Sustained release curcumin loaded solid lipid nanoparticles, Adv. Pharm. Bull., vol. 6, no. 1, pp. 17–21.

[55] Vachanont Tangsatianpan, S. Torgbo, and P. Sukyai, 2020. Release Kinetic Model and Antimicrobial Activity of Freeze-Dried Curcumin-loaded Bacterial Nanocellulose Composite, Polym. Sci. - Ser. A.

[56] D. Hernandez-Patlan et al., 2018. Evaluation of a solid dispersion of curcumin with polyvinylpyrrolidone and boric acid against salmonella enteritidis infection and intestinal permeability in broiler chickens: A pilot study, Front. Microbiol., vol. 9, no. JUN, pp. 1–10.

[57] P. W. Groundwater et al., 2017. A Carbocyclic Curcumin Inhibits Proliferation of Gram-Positive Bacteria by Targeting FtsZ, Biochemistry, vol. 56, no. 3, pp. 514–524.

[58] T. Matsui et al., 2012. Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus, Acta Crystallogr. Sect. D Biol. Crystallogr., vol. 68, no. 9, pp. 1175–1188.

[59] S. Kaur, N. H. Modi, D. Panda, and N. Roy, 2010. Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ - A structural insight to unveil antibacterial activity of curcumin, Eur. J. Med. Chem., vol. 45, no. 9, pp. 4209–4214.

[60] P. Tyagi, M. Singh, H. Kumari, A. Kumari, and K. Mukhopadhyay, 2015. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane, PLoS One, vol. 10, no. 3, pp. 1–15.

[61] X. Niu et al., 2019. “Molecular Modelling reveals the inhibition mechanism and structure–activity relationship of curcumin and its analogues to Staphylococcal aureus Sortase A,” J. Biomol. Struct. Dyn., vol. 37, no. 5, pp. 1220–1230.

[62] H. S. Na, M. H. Cha, D. R. Oh, C. W. Cho, J. H. Rhee, and Y. R. Kim, 2011. Protective mechanism of curcumin against Vibrio vulnificus infection, FEMS Immunol. Med. Microbiol., vol. 63, no. 3, pp. 355–362.

[63] N. Negi, P. Prakash, M. L. Gupta, and T. M. Mohapatra, 2014. Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa, J. Clin. Diagnostic Res., vol. 8, no. 10, pp. DC04–DC07.

[64] S. Balaji and B. Chempakam, 2010. Toxicity prediction of compounds from turmeric (Curcuma longa L), Food Chem. Toxicol., vol. 48, no. 10, pp. 2951–2959.

[65] P. Qiu et al., 2016. Overdose Intake of Curcumin Initiates the Unbalanced State of Bodies, vol. 64, no. 13.
How to Cite
Sekarini, A. A. A. D., Krissanti, I., & Syamsunarno, M. R. A. A. (2020). Efektivitas Antibakteri Senyawa Kurkumin terhadap Foodborne Bacteria: Tinjauan Curcuma longa untuk Mengatasi Resistensi Antibiotik. Jurnal Sains Dan Kesehatan, 2(4). Retrieved from https://jsk.farmasi.unmul.ac.id/index.php/jsk/article/view/219