Covid-19 and Its Vaccine Development: A Narrative Review

Authors

  • Risa Septinia Faculty of Pharmacy, Universitas Airlangga, Surabaya
  • Didik Hasmono Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.25026/jsk.v3i6.444

Keywords:

COVID-19, SARS-CoV-2, antibody-dependent enhancement (ADE), mutation, vaccine platforms

Abstract

COVID-19 merupakan penyakit saluran pernapasan yang ditetapkan sebagai pandemi pada Maret 2020 dan disebabkan oleh severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Tingginya penyebaran COVID-19 di seluruh dunia menyebabkan pengembangan vaksin mendesak untuk dilakukan. Oleh karena itu, review ini bertujuan untuk mengkaji tentang COVID-19 dan tantangannya dalam pengembangan vaksin serta mengkaji keamanan, efektivitas, dan immunogenisitas dari platform vaksin-vaksin yang telah mendapatkan izin penggunaan di beberapa negara. Berdasarkan pengalaman infeksi yang pernah terjadi di dunia, vaksin mampu mencegah penyebaran penyakit-penyakit infeksi dan menyelamatkan 23,3 juta nyawa. Terdapat beberapa tantangan yang dihadapi dalam pengembangan vaksin untuk COVID-19, diantaranya mudahnya SARS-CoV-2 bermutasi dan potensi terjadinya antibody-dependent enhancement (ADE) setelah vaksinansi. Berbagai macam platform digunakan dalam perkembangan vaksin COVID-19, baik platform teknologi tradisional (inactivated dan live-attenuated vaccine) maupun teknologi baru (viral vector, protein subunit, dan nucleic acid vaccine). Untuk mencegah penyebaran infeksi SARS-CoV-2, terdapat 10 vaksin yang telah mendapatkan izin penggunaan darurat di beberapa negara. Platform yang digunakan antara lain vaksin mRNA, vektor virus, terinaktivasi, dan vaksin peptida. Vaksin-vaksin tersebut dilaporkan efektif, aman dan dapat ditoleransi dengan baik oleh partisipan dengan derajat efek samping yang timbul adalah ringan hingga sedang. Meskipun kejadian ADE tidak ditemukan dalam semua vaksin tersebut, monitoing terhadap kejadian tersebut harus dilakukan karena berdasar pada pengalaman penggunaan platform inactivated vaccine SARS-CoV sebelumnya, diketahui dapat menimbulkan vaccine-associated enhanced respiratory diseases (VAERD).

References

[1] WHO, “Timeline: WHO’s COVID-19 response,” 2020. [Online]. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline. [Accessed: 25-Dec-2020].
[2] KEMENKES RI, “Situasi terkini perkembangan novvel coronavirus (COVID-19): Data dilaporkan sampai 20 Januari 2021,” Indonesia, 2020.
[3] L. A. Lee et al., “The estimated mortality impact of vaccinations forecast to be administered during 2011 – 2020 in 73 countries supported by the GAVI Alliance,” Vaccine, vol. 31, no. 2013, pp. B61–B72, 2013.
[4] S. Rauch, E. Jasny, K. E. Schmidt, and B. Petsch, “New Vaccine Technologies to Combat Outbreak Situations,” Front. Immunol., vol. 9, no. September, pp. 1–24, 2018.
[5] Y. Liu, R. Kuo, and S. Shih, “COVID-19?: The first documented coronavirus pandemic in history,” Biomed. J., vol. 43, no. 4, pp. 328–333, 2020.
[6] WHO, “Criteria for COVID-19 vaccine prioritization,” 2020. [Online]. Available: https://www.who.int/publications/m/item/criteria-for-covid-19-vaccine-prioritization. [Accessed: 24-Nov-2020].
[7] P. Zhou et al., “A pneumonia outbreak associated with a new coronavirus of probable bat origin,” Nature, vol. 579, pp. 270–273, 2020.
[8] B. L. Haagmans et al., “Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation,” Lancet Infect Dis, vol. 14, pp. 140–145, 2020.
[9] Z. A. Memish et al., “Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia,” Emerg. Infect. Dis., vol. 19, no. 11, pp. 1819–1823, 2013.
[10] B. Hu et al., “Discovery of a rich gene pool of bat SARS- related coronaviruses provides new insights into the origin of SARS coronavirus,” PLOS Pathog., vol. 13, no. e1006698, pp. 1–27, 2017.
[11] D. Paraskevis, E. G. Kostaki, G. Magiorkinis, G. Panayiotakopoulos, G. Sourvinos, and S. Tsiodras, “Full-genome evolutionary analysis of the novel coronavirus ( 2019-nCoV ) rejects the hypothesis of emergence as a result of a recent recombination event,” Infect. Genet. Evol., vol. 79, no. 104212, pp. 1–4, 2020.
[12] R. Lu et al., “Genomic characterization and epidemiology of 2019 novel coronavirus?: implications for virus origins and receptor binding,” Lancet, vol. 395, pp. 565–574, 2020.
[13] ICTV, “Order: Nidovirales,” Chapter Version: International Committee on Taxonomy of Viruses (ICTV) Ninth Report, 2009. [Online]. Available: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/219/nidovirales. [Accessed: 02-Dec-2020].
[14] J. F. Chan et al., “Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan,” Emerg. Microbes Infect., vol. 9, no. 1, pp. 221–236, 2020.
[15] A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and D. Veesler, “Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein,” Cell, vol. 180, no. April, pp. 281–292, 2020.
[16] J. K. Millet and G. R. Whittaker, “Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein,” PNAS, vol. 111, no. 42, pp. 15214–15219, 2014.
[17] B. Coutard, C. Valle, X. De Lamballerie, B. Canard, N. G. Seidah, and E. Decroly, “The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade,” Antiviral Res., vol. 176, no. 104742, pp. 1–5, 2020.
[18] C. Huang et al., “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China,” Lancet, vol. 395, pp. 497–506, 2020.
[19] W. Guan et al., “Clinical Characteristics of Coronavirus Disease 2019 in China,” N. Engl. J. Med., pp. 1–13, 2020.
[20] S. A. Meo et al., “Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV,” Eur. Rev. Med. Pharmacol. Sci., vol. 24, pp. 2012–2019, 2020.
[21] P. S. Masters and S. Perlman, “Coronaviridae,” in Fields Virology, 6th Ed., D. M. Knipe and P. M. Howley, Eds. Philadelphia: Lippincott Williams & Wilkins, a Wolters Kluwer business, 2013.
[22] J. Zhang, H. Zeng, J. Gu, H. Li, L. Zheng, and Q. Zou, “Progress and Prospects on Vaccine Development against SARS-CoV-2,” Vaccines, vol. 8, no. 153, pp. 1–12, 2020.
[23] F. Li, “Structure, Function, and Evolution of Coronavirus Spike Proteins,” Annu Rev Virol, vol. 3, no. 1, pp. 237–261, 2016.
[24] D. Wrapp et al., “Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation,” Science (80-. )., vol. 367, pp. 1260–1263, 2020.
[25] J. Lan et al., “Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor,” BioRxiv, pp. 1–20, 2020.
[26] R. Mcbride, M. Van Zyl, and B. C. Fielding, “The Coronavirus Nucleocapsid Is a Multifunctional Protein,” Viruses, vol. 6, pp. 2991–3018, 2014.
[27] B. W. Neuman et al., “A structural analysis of M protein in coronavirus assembly and morphology,” J. Struct. Biol., vol. 174, pp. 11–22, 2011.
[28] D. T. M. Leung et al., “Antibody Response of Patients with Severe Acute Respiratory Syndrome (SARS) Targets the Viral Nucleocapsid,” J. Infect. Dis., vol. 190, pp. 379–386, 2004.
[29] H. Hu, X. Huang, L. Tao, Y. Huang, B. Cui, and H. Wang, “Comparative analysis of the immunogenicity of SARS-CoV nucleocapsid DNA vaccine administrated with different routes in mouse model,” Vaccine, vol. 27, pp. 1758–1763, 2020.
[30] H. Pang et al., “Communication Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine,” J. Gen. Virol., vol. 85, pp. 3109–3113, 2004.
[31] J. Liu et al., “The Membrane Protein of Severe Acute Respiratory Syndrome Coronavirus Acts as a Dominant Immunogen Revealed by a Clustering Region of Novel Functionally and Structurally Defined Cytotoxic T-Lymphocyte Epitopes,” J. Infect. Dis., vol. 202, pp. 1171–1180, 2010.
[32] J. L. Nieto-Torres et al., “Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis,” PLOS Pathog., vol. 10, no. 5, pp. 1–19, 2014.
[33] D. Mercatelli and F. M. Giorgi, “Geographic and Genomic Distribution of SARS-CoV-2 Mutations,” Front. Microbiol., vol. 11, no. 1800, pp. 1–13, 2020.
[34] P. Forster, L. Forster, C. Renfrew, and M. Forster, “Phylogenetic network analysis of SARS-CoV-2 genomes,” PNAS, vol. 117, no. 17, pp. 9241–9243, 2020.
[35] C. Ceraolo and F. M. Giorgi, “Genomic variance of the 2019?nCoV coronavirus,” J. Med. Virol., vol. 92, pp. 522–528, 2020.
[36] R. V Nidom, S. Indrasari, I. Normalina, M. K. J. Kusala, A. N. M. Ansori, and A. Chairul, “Investigation of the D614G Mutation and Antibody-Dependent Enhancement Sequences in Indonesian SARS-CoV-2 Isolates and Comparison to Southeast Asian Isolates,” Syst. Rev. Pharm., vol. 11, no. 8, pp. 203–213, 2020.
[37] H. Zhou and X. Pang, “Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation,” Chem. Rev, vol. 118, no. 4, pp. 1691–1741, 2019.
[38] P. K. Singh, U. Kulsum, S. B. Rufai, S. R. Mudliar, and S. Singh, “Mutations in SARS-CoV-2 Leading to Antigenic Variations in Spike Protein: A Challenge in Vaccine Development,” J Lab Physicians, vol. 12, pp. 154–160, 2020.
[39] S. Huzurbazar, G. Kolesov, S. E. Massey, K. C. Harris, A. Churbanov, and D. A. Liberles, “Lineage-Specific Differences in the Amino Acid Substitution Process,” J Mol Biol, vol. 396, no. 5, pp. 1410–1421, 2010.
[40] K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, and R. F. Garry, “The proximal origin of SARS-CoV-2,” Nat. Med., vol. 26, no. 4, pp. 450–452, 2020.
[41] M. Cloutier, M. Nandi, A. U. Ihsan, H. A. Chamard, S. Ilangumaran, and S. Ramanathan, “ADE and hyperinflammation in SARS-CoV2 infection- comparison with dengue hemorrhagic fever and feline infectious peritonitis,” Cytokine, vol. 136, no. 155256, pp. 1–9, 2020.
[42] S. Duffy, “Why are RNA virus mutation rates so damn high??,” PLOS Biol., vol. 16, no. 8, pp. 1–6, 2018.
[43] M. Becerra-Flores and T. Cardozo, “SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate,” Int J Clin Pr., pp. 1–10, 2020.
[44] J. Wise, “Covid-19: New coronavirus variant is identified in UK,” BMJ, vol. 371, no. m4857, 2020.
[45] A. J. Mcauley et al., “Experimental and in silico evidence suggests vaccines are unlikely to be affected by D614G mutation in SARS-CoV-2 spike protein,” npj Vaccines, vol. 5, no. 96, pp. 1–5, 2020.
[46] B. Dearlove et al., “A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants,” PNAS, vol. 117, no. 38, pp. 23652–23662, 2020.
[47] A. M. Arvin et al., “A perspective on potential antibody- dependent enhancement of SARS-CoV-2,” Nature, vol. 584, no. May, pp. 353–363, 2020.
[48] M. S. Yip et al., “Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus,” Virol. J., vol. 11, no. 82, pp. 1–11, 2014.
[49] M. Jaume et al., “Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent Fc?R Pathway,” J. Virol., vol. 85, no. 20, pp. 10582–10597, 2011.
[50] H. Ulrich, M. M. Pillat, and A. Tárnok, “Dengue Fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A Perspective,” Cytom. A, vol. 97, no. 7, pp. 662–667, 2020.
[51] J. Wang and M. S. Zand, “The potential for antibody-dependent enhancement of SARS-CoV-2 infection: Translational implications for vaccine development,” J. Clin. Transl. Sci., pp. 1–4, 2020.
[52] K. Hui et al., “Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures,” Lancet Respir. Med., vol. 8, pp. 687–695, 2020.
[53] B. B. S. Graham, “Rapid COVID-19 vaccine development,” Science (80-. )., vol. 368, no. 6494, pp. 945–946, 2020.
[54] I. D. Iankov, M. Pandey, M. Harvey, G. E. Griesmann, M. J. Federspiel, and S. J. Russell, “Immunoglobulin G Antibody-Mediated Enhancement of Measles Virus Infection Can Bypass the Protective Antiviral Immune Response,” J. Virol., vol. 80, no. 17, pp. 8530–8540, 2006.
[55] L. C. Katzelnick et al., “Antibody-dependent enhancement of severe dengue disease in humans,” Science (80-. )., vol. 358, pp. 929–932, 2017.
[56] T. J. Ruckwardt, K. M. Morabito, and B. S. Graham, “Review Immunological Lessons from Respiratory Syncytial Virus Vaccine Development,” Immunity, vol. 51, pp. 429–442, 2019.
[57] J. Maamary, T. T. Wang, G. S. Tan, P. Palese, and J. V Ravetch, “Increasing the breadth and potency of response to the seasonal influenza virus vaccine by immune complex immunization,” PNAS, vol. 114, no. 38, pp. 10172–10177, 2017.
[58] S. A. Kemp et al., “Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion,” bioRxiv, 2020.
[59] E. Alm et al., “Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020,” Euro Surveill, vol. 25, no. 32, pp. 1–8, 2020.
[60] Public Health England, Investigation of novel SARS-CoV-2 variant, Variant of Concern 202012/01 Technical briefing 2, no. 28 December 2020. London: PHE, 2020.
[61] WHO, “SARS-CoV-2 Variants: Disease Outbreak News 31 December 2020,” Emergencies preparedness, response, 2020. [Online]. Available: https://www.who.int/csr/don/31-december-2020-sars-cov2-variants/en/#:~:text=On 18 December%2C national authorities,because of a N501Y mutation. [Accessed: 21-Jan-2020].
[62] J. Lutz et al., “Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines,” npj Vaccines, pp. 1–9, 2017.
[63] J. J. Donnelly, B. Wahren, and M. A. Liu, “DNA Vaccines: Progress and Challenges,” J. Immunol., vol. 175, pp. 633–639, 2005.
[64] G. Armengol, L. M. Ruiz, and S. Orduz, “The Injection of Plasmid DNA in Mouse Muscle Results in Lifelong Persistence of DNA, Gene Expression, and Humoral Response,” Mol. Biotechnol., vol. 27, pp. 109–118, 2004.
[65] N. Pardi, M. J. Hogan, F. W. Porter, and D. Weissman, “mRNA vaccines — a new era in vaccinology,” Nat. Publ. Gr., vol. 17, no. 4, pp. 261–279, 2018.
[66] L. Stitz et al., “A thermostable messenger RNA based vaccine against rabies,” PLoS Negl. Trop. Dis., vol. 11, no. 12, p. e0006108, 2017.
[67] M. Alberer et al., “Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomized, prospective, first-in-human phase 1 clinical trial,” Lancet, vol. 6736, no. 17, pp. 1–10, 2017.
[68] L. Huang et al., “SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies,” Asian J. Pharm. Sci., pp. 1–11, 2020.
[69] G. Maruggi, C. Zhang, J. Li, J. B. Ulmer, and D. Yu, “mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases,” Mol. Ther., vol. 27, no. 4, pp. 757–772, 2019.
[70] F. P. Polack et al., “Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine,” N. Engl. J. Med., pp. 1–13, 2020.
[71] E. E. Walsh et al., “Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates,” N. Engl. J. Med., pp. 1–13, 2020.
[72] U. Sahin et al., “BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans,” medRxiv Prepr. Serv. Heal. Sci., 2020.
[73] L. R. Baden et al., “Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine,” N. Engl. J. Med., pp. 1–14, 2020.
[74] L. A. Jackson et al., “An mRNA Vaccine against SARS-CoV-2 — Preliminary Report,” N. Engl. J. Med., pp. 1–12, 2020.
[75] B. F. Haynes et al., “Prospects for a safe COVID-19 vaccine,” Sci. Transl. Med., pp. 1–17, 2020.
[76] L. A. Reperant and A. D. M. E. Osterhaus, “AIDS, Avian flu, SARS, MERS, Ebola, Zika... what next?,” Vaccine, vol. 35, pp. 4470–4474, 2020.
[77] S. Xiong et al., “Immunogenicity ofSARS inactivated vaccine in BALB/c mice,” Immunol. Lett., vol. 95, pp. 139–143, 2020.
[78] Y. Tsunetsugu-Yokota, “Large-Scale Preparation of UV-Inactivated SARS Coronavirus Virions for Vaccine Antigen,” Methods Mol. Biol., vol. 454, pp. 119–126, 2008.
[79] N. Iwata-Yoshikawa et al., “Effects of Toll-Like Receptor Stimulation on Eosinophilic Infiltration in Lungs of BALB/c Mice Immunized with UV-Inactivated Severe Acute Respiratory Syndrome-Related Coronavirus Vaccine,” J. Virol., vol. 88, no. 15, pp. 8597–8614, 2014.
[80] M. Robert-Guroff, “Replicating and non-replicating viral vectors for vaccine development,” Curr. Opin. Biotechnol., vol. 18, pp. 546–556, 2007.
[81] S. Xia et al., “Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials,” JAMA Prelim. Commun., pp. 1–10, 2020.
[82] R. Ella et al., “A Phase 1: Safety and Immunogenicity Trial of an Inactivated SARS-CoV-2 Vaccine- BBV152,” medRxiv, pp. 1–21, 2020.
[83] S. Xia et al., “Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomized, double-blind, placebo-controlled, phase 1/2 trial,” Lancet Infect. Dis., vol. 21, pp. 39–51, 2020.
[84] Y. Zhang et al., “Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18 – 59 years: a randomized, double-blind, placebo-controlled, phase 1/2 clinical trial,” Lancet Infect. Dis., pp. 1–12, 2020.
[85] B. Hao et al., “Efficacy, safety and immunogenicity of live attenuated varicella vaccine in healthy children in China: double-blind, randomized, placebo-controlled clinical trial,” Clin. Microbiol. Infect., vol. 25, no. 8, pp. 1026–1031, 2019.
[86] P. Jin, J. Li, Y. Zhou, and F. Zhu, “Immunological surrogate endpoints to evaluate vaccine efficacy,” Chin J Prev Med, vol. 49, pp. 1110–14, 2015.
[87] Q. Gao, L. Bao, H. Mao, L. Wang, and C. Qin, “Development of an inactivated vaccine candidate for SARS-CoV-2.,” Science (80-. )., vol. 369, pp. 77–81, 2020.
[88] W. Chen et al., “Antibody response and viraemia during the course of severe acute respiratory syndrome (SARS)-associated coronavirus infection,” J Med Microbiol, vol. 53, no. Pt 5, pp. 435–438, 2004.
[89] J. Prevost et al., “Cross-sectional evaluation of humoral responses against SARS-CoV-2 Spike,” Cell Rep Med, vol. 1, no. 100126, 2020.
[90] D. C. Payne et al., “Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus,” Emerg Infect Dis, vol. 22, no. 10, pp. 1824–1826, 2016.
[91] K. Zhang, J. Y. Lau, L. Yang, and Z. Ma, “SARS-CoV-2 reinfection in two patients who have recovered from COVID-19,” Precis Clin Med, vol. Sep 4, no. pbaa031, 2020.
[92] P. K. S. Chan et al., “Serologic responses in healthy adult with SARS-CoV-2 reinfection, Hong Kong, August 2020.,” Emerg Infect Dis, vol. published, 2020.
[93] A. T. Huang et al., “A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity,” Nat. Commun., vol. 11, no. 4704, 2020.
[94] P. He, Y. Zou, and Z. Hu, “Advances in aluminum hydroxide-based adjuvant research and its mechanism,” Hum. Vaccin. Immunother., vol. 11, no. 2, pp. 477–488, 2015.
[95] M. Bolles et al., “A Double-Inactivated Severe Acute Respiratory Syndrome Coronavirus Vaccine Provides Incomplete Protection in Mice and Induces Increased Eosinophilic Proinflammatory Pulmonary Response upon Challenge,” J. Virol., vol. 85, no. 23, pp. 12201–12215, 2011.
[96] F. Yasui et al., “Prior Immunization with Severe Acute Respiratory Syndrome (SARS)-Associated Coronavirus (SARS-CoV) Nucleocapsid Protein Causes Severe Pneumonia in Mice Infected with SARS-CoV,” J. Immunol., vol. 181, pp. 6337–6348, 2015.
[97] D. Deming et al., “Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants,” PloS Med., vol. 3, no. 12, pp. 2359–2375, 2006.
[98] A. Grifoni et al., “Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals,” Cell, vol. 181, pp. 1489–1501, 2020.
[99] D. Weiskopf et al., “Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome,” Sci. Immunol., pp. 1–14, 2020.
[100] N. Arnberg, “Adenovirus receptors: implications for targeting of viral vectors,” Trends Pharmacol. Sci., vol. 33, no. 8, pp. 442–448, 2012.
[101] D. Y. Logunov et al., “Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia,” Lancet, vol. 396, pp. 887–897, 2020.
[102] F. Zhu et al., “Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial,” Lancet, vol. 396, pp. 479–488, 2020.
[103] M. N. Ramasamy et al., “Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial,” Lancet, vol. 396, pp. 1979–1993, 2020.
[104] F. Zhu et al., “Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial,” Lancet, vol. 395, pp. 1845–1854, 2020.
[105] M. Z. Tay, C. M. Poh, L. Rénia, P. A. Macary, and L. F. P. Ng, “The trinity of COVID-19: immunity, inflammation and intervention,” Nat. Rev. Immunol., vol. 20, pp. 363–374, 2020.
[106] T. K. Burki, “The Russian vaccine for COVID-19,” Lancet Respir., vol. 8, no. 11, pp. e85–e86, 2020.
[107] B. Marintcheva, “Viruses as Tools for Vaccine Development,” in Harnessing the Power of Viruses, Academic Press, 2018, pp. 217–242.
[108] G. G. Zom, S. Khan, and C. M. Britten, “Efficient Induction of Antitumor Immunity by Synthetic Toll-like Receptor Ligand ? Peptide Conjugates,” Cancer Immunol. Res., vol. 2, no. 8, pp. OF1-9, 2014.
[109] E. M. Varypataki, N. Benne, J. Bouwstra, W. Jiskoot, and F. Ossendorp, “Efficient Eradication of Established Tumors in Mice with Cationic Liposome-Based Synthetic Long-Peptide Vaccines,” Cancer Immunol. Res., vol. 5, no. 3, pp. 222–234, 2017.
[110] J. M. Blander, “Regulation of the Cell Biology of Antigen Cross Presentation,” Annu Rev Immunol, vol. 36, pp. 717–753, 2018.
[111] H. Zhang et al., “Comparing Pooled Peptides with Intact Protein for Accessing Cross-presentation Pathways for Protective CD8+ and CD4+,” J. Biol. Chem., vol. 284, no. 14, pp. 9184–9191, 2009.
[112] R. A. Rosalia et al., “Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation,” Eur. J. Immunol., vol. 00, pp. 1–12, 2013.
[113] J. Menager et al., “Cross-Presentation of Synthetic Long Peptides by Human Dendritic Cells: A Process Dependent on ERAD Component p97/VCP but Not sec61 and/or Derlin-1,” PLoS One, vol. 9, no. 2, pp. 1–13, 2014.
[114] ClinicalTrials.gov, “Study of the Safety, Reactogenicity and Immunogenicity of ‘EpiVacCorona’ Vaccine for the Prevention of COVID-19 (EpiVacCorona),” 2020. [Online]. Available: https://clinicaltrials.gov/ct2/show/NCT04527575. [Accessed: 20-Jan-2021].

Downloads

Published

2021-12-31

How to Cite

Septinia, R., & Hasmono, D. (2021). Covid-19 and Its Vaccine Development: A Narrative Review. Jurnal Sains Dan Kesehatan, 3(6), 917–929. https://doi.org/10.25026/jsk.v3i6.444