Skrening Kandungan Kimia Macaranga gigantea Reichb.f. & Zoll Interaksi terhadap GSTs

Chemical Compound Screening Macaranga gigantea Reichb.f. & Zoll Interaction against GSTs

Authors

  • Samsul Hadi Universitas Lambung Mangkurat
  • Kunti Nastiti Prodi Farmasi, Universitas Sari Mulia
  • Dian Ekowati Prodi Farmasi, Universitas Lambung Mangkurat
  • Ana Muliana Prodi Farmasi, Universitas Lambung Mangkurat
  • Arif Subekti Prodi Farmasi, Universitas Lambung Mangkurat

DOI:

https://doi.org/10.25026/jsk.v3i5.576

Keywords:

GSTs, Macaranga gigantean, stabilisasi

Abstract

Penelitian Macaranga gigantea sebagai antioksidan sudah banyak dilakukan, Metode yang dipakai yaitu penangkap radikal DPPH dan Lipidperoksidasi. Metode isolasi  senyawa dari Macaranga gigantea  juga sudah dilakukan dan menghasilkan berbagai macam kandungan. Sehingga penelitian ini bertujuan mencari senyawa yang mempunyai interaksi paling stabil terhadap reseptor GSTs, karena GSTs adalah salah satu enzim yang berperan dalam antioksidan secara alami di dalam tubuh. Metode yang digunkan dalam penelitian ini adalah docking dengan metode PLANTS, persiapan ligand dengan Marvin Beans, dan visualisasi dengan Discovery studio. Dari penelitian ini diperoleh skor docking yang lebih baik dari ligand original pada 1TDI yaitu corilagin (-94,764), glyasperin A (-86,784), macagigantin (-104,752), musennin (-82,217), skor docking yang terbaik ketika berikatan dengan 3LJR adalah macagigantin (-110,028) dan dengan 18GS adalah macagigantin (-83,675). Kesimpulan dari penelitian ini adalah macagigantin dari Macaranga gigantea  merupakan ligand potensial dalam hal stabilasi interaksi dengan reseptor.

References

[1] N. P. Vermeulen, J. G. Bessems, and R. Van de Straat, “Molecular aspects of paracetamol-induced hepatotoxicity and its mechanism-based prevention.,” Drug Metab. Rev., vol. 24, no. 3, pp. 367–407, 1992, doi: 10.3109/03602539208996298.

[2] C. E. Presnell et al., “Computational insights into the role of glutathione in oxidative stress.,” Curr. Neurovasc. Res., vol. 10, no. 2, pp. 185–194, May 2013, doi: 10.2174/1567202611310020011.

[3] N. A. Mazlan et al., “Antioxidant, Antityrosinase, Anticholinesterase, and Nitric Oxide Inhibition Activities of Three Malaysian Macaranga Species,” Sci. World J., vol. 2013, p. 312741, 2013, doi: 10.1155/2013/312741.

[4] E. T. Arung et al., “Antioxidant and Antimelanogenesis Activities of Glyasperin A from Macaranga pruinosa Leaves,” Nat. Prod. Commun., vol. 14, no. 7, 2019, doi: 10.1177/1934578X19867192.

[5] O. Korb, T. Stützle, and T. E. Exner, “Empirical scoring functions for advanced Protein-Ligand docking with PLANTS,” J. Chem. Inf. Model., vol. 49, no. 1, pp. 84–96, 2009, doi: 10.1021/ci800298z.

[6] ChemAxon, “ChemAxon - Software Solutions and Services for Chemistry and Biology,” MarvinSketch, Version 16.10.31, 2016. https://chemaxon.com/.

[7] D. Systèmes, “Free Download: BIOVIA Discovery Studio Visualizer - Dassault Systèmes.” 2020, [Online]. Available: https://discover.3ds.com/discovery-studio-visualizer-download#_ga=2.4935860.685747970.1587999055-a5d1c1c0-3176-11e9-a86f-e302515d21c8.

[8] M. Tanjung, E. H. Hakim, D. Mujahidin, M. Hanafi, and Y. M. Syah, “Macagigantin, a farnesylated flavonol from Macaranga gigantea,” J. Asian Nat. Prod. Res., vol. 11, no. 11, pp. 929–932, 2009, doi: 10.1080/10286020903302315.

[9] F. O. Akerina, T. Nurhayati, and R. Suwandi, “Isolation and Characterization of Antibacterial Compounds from Sea Urchin,” J. Pengolah. Has. Perikan. Indones., vol. 18, no. 1, 2015, doi: 10.17844/jphpi.v18i1.9564.

[10] N. F. Mohd Rasid, N. Ahmat, and A. S. Kamarozaman, “Two flavonoids isolated from the leaves of Macaranga gigantea,” Planta Med, vol. 82, no. S 01, p. P141, 2016, doi: 10.1055/s-0036-1596305.

[11] Y. Gu et al., “Crystal structure of human glutathione S-transferase A3-3 and mechanistic implications for its high steroid isomerase activity.,” Biochemistry, vol. 43, no. 50, pp. 15673–15679, Dec. 2004, doi: 10.1021/bi048757g.

[12] J. Rossjohn et al., “Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site.,” Structure, vol. 6, no. 3, pp. 309–322, Mar. 1998, doi: 10.1016/s0969-2126(98)00034-3.

[13] A. J. Oakley, M. Lo Bello, M. Nuccetelli, A. P. Mazzetti, and M. W. Parker, “The ligandin (non-substrate) binding site of human Pi class glutathione transferase is located in the electrophile binding site (H-site).,” J. Mol. Biol., vol. 291, no. 4, pp. 913–926, Aug. 1999, doi: 10.1006/jmbi.1999.3029.

[14] K. E. Hevener et al., “Validation of molecular docking programs for virtual screening against dihydropteroate synthase,” J. Chem. Inf. Model., vol. 49, no. 2, pp. 444–460, Feb. 2009, doi: 10.1021/ci800293n.

Downloads

Published

2021-10-31

How to Cite

Hadi, S., Nastiti, K., Ekowati, D., Muliana, A., & Subekti, A. (2021). Skrening Kandungan Kimia Macaranga gigantea Reichb.f. & Zoll Interaksi terhadap GSTs : Chemical Compound Screening Macaranga gigantea Reichb.f. & Zoll Interaction against GSTs . Jurnal Sains Dan Kesehatan, 3(5), 687–693. https://doi.org/10.25026/jsk.v3i5.576