Peran Disregulasi Imunitas dalam Terapi Kusta pada Area Endemis: Artikel Review

The Role of Immune Dysregulation in Leprosy Treatment in Endemic Areas: Review Article




leprosy, immune dysregulation, leprosy therapy


Leprosy, a chronic infectious disease caused by Mycobacterium leprae, causes health problems and endemic in several countries. The number of new cases of leprosy is constantly reported in endemic countries. Therapeutic efforts in leprosy patients are carried out with the aim of reducing the level of transmission and disability of leprosy patients. Leprosy therapy with the use of a multidrug regimen (MDT) has been shown to be able to reduce the number of leprosy cases but has not been able to suppress the rate of growth of new leprosy cases. The constant number of new cases of leprosy in endemic areas indicates community infection and the inability of MDT as a single strategy to complete treatment and stop the transmission of leprosy. The transmission of leprosy is known to be multifactorial involving: microbial factors, host factors, and environmental factors. These factors are thought to cause immune dysregulation and increase the risk of leprosy infection in people living in endemic areas. An understanding of immune dysregulation is needed to achieve succesful treatment and the eradication of leprosy.


C. Franco-Paredes and A. J. Rodriguez-Morales, “Unsolved matters in leprosy: A descriptive review and call for further research,” Annals of Clinical Microbiology and Antimicrobials, vol. 15, no. 1. 2016, doi: 10.1186/s12941-016-0149-x.

OMS, “Weekly epidemiological record. Global leprosy update, 2018: moving towards a leprosy,” Wkly. Epidemiol. Rec., vol. 94, no. August 2019, pp. 389–412, 2019, [Online]. Available:

WHO, Integrating Neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases. 2017.

M. Malathi and D. M. Thappa, “Fixed-duration therapy in leprosy: Limitations and opportunities,” Indian Journal of Dermatology. 2013, doi: 10.4103/0019-5154.108029.

S. D. Santos, G. O. Penna, M. da C. N. Costa, M. S. Natividade, and M. G. Teixeira, “Leprosy in children and adolescents under 15 years old in an urban centre in Brazil,” Mem. Inst. Oswaldo Cruz, vol. 111, no. 6, pp. 359–364, 2016, doi: 10.1590/0074-02760160002.

M. C. A. Vieira, J. S. Nery, E. S. Paixão, K. V. Freitas de Andrade, G. Oliveira Penna, and M. G. Teixeira, “Leprosy in children under 15 years of age in Brazil: A systematic review of the literature,” PLoS Negl. Trop. Dis., 2018, doi: 10.1371/journal.pntd.0006788.

S. Sadhu and D. K. Mitra, “Emerging concepts of adaptive immunity in leprosy,” Frontiers in Immunology, vol. 9, no. APR. 2018, doi: 10.3389/fimmu.2018.00604.

T. H. M. Ottenhoff, “New pathways of protective and pathological host defense to mycobacteria,” Trends in Microbiology, vol. 20, no. 9. pp. 419–428, 2012, doi: 10.1016/j.tim.2012.06.002.

M. L. Palermo et al., “Increased expression of regulatory T cells and down-regulatory molecules in lepromatous leprosy,” Am. J. Trop. Med. Hyg., vol. 86, no. 5, pp. 878–883, 2012, doi: 10.4269/ajtmh.2012.12-0088.

K. Bobosha et al., “T-Cell Regulation in Lepromatous Leprosy,” PLoS Negl. Trop. Dis., vol. 8, no. 4, 2014, doi: 10.1371/journal.pntd.0002773.

J. R. de Sousa, M. N. Sotto, and J. A. S. Quaresma, “Leprosy as a complex infection: Breakdown of the Th1 and Th2 immune paradigm in the immunopathogenesis of the disease,” Frontiers in Immunology, vol. 8, no. NOV. 2017, doi: 10.3389/fimmu.2017.01635.

F. R. S. Prakoeswa et al., “Correlation Analysis between Household Hygiene and Sanitation and Nutritional Status and Female Leprosy in Gresik Regency,” Dermatol. Res. Pract., vol. 2020, 2020, doi: 10.1155/2020/4379825.

P. A. M. Schreuder, S. Noto, and J. H. Richardus, “Epidemiologic trends of leprosy for the 21st century,” Clin. Dermatol., vol. 34, no. 1, pp. 24–31, 2016, doi: 10.1016/j.clindermatol.2015.11.001.

World Health Organization, “Weekly epidemiological record. Global leprosy update, 2018: moving towards a leprosy,” Wkly. Epidemiol. Rec., vol. 94, no. August 2019, pp. 389–412, 2019, doi: 94 (?35/36)?, 389 - 411.

M. B. Santos et al., “Distinct Roles of Th17 and Th1 Cells in Inflammatory Responses Associated with the Presentation of Paucibacillary Leprosy and Leprosy Reactions,” Scand. J. Immunol., vol. 86, no. 1, pp. 40–49, 2017, doi: 10.1111/sji.12558.

Q. A. Cendaki, “The Findings of Mycobacterium Leprae DNA Existence in the Air as an Indication of Leprosy Transmission from Respiratory System,” J. Kesehat. Lingkung., vol. 10, no. 2, p. 181, 2018, doi: 10.20473/jkl.v10i2.2018.181-190.

L. R. S. Kerr-Pontes, M. L. Barreto, C. M. N. Evangelista, L. C. Rodrigues, J. Heukelbach, and H. Feldmeier, “Socioeconomic, environmental, and behavioural risk factors for leprosy in North-east Brazil: Results of a case-control study,” Int. J. Epidemiol., vol. 35, no. 4, pp. 994–1000, 2006, doi: 10.1093/ije/dyl072.

Ulina, DR, Pramuningtyas, Ratih, Dasuki, MS, Prakoeswa, FR. "Personal Hygiene dan Status Gizi Sebagai Faktor Risiko Kusta Anak". Proceeding Book National Symposium and workshop Continuing Medical Education XIV. FK UMS. 2021.

R. Ratnawati, Rahfiludin, MZ, and Kartasurya, “Relationship between Home Physical and Non-Physical Environment with Anti Phenolic Glicolipid-1 IgM Antibody Levels in Children of Leprosy Patients (House Physical and Non-Physical Environment Associated with Levels of IgM Anti Phenolic Glicolipid-1 (PGL-,” Period. Ski. Heal. Gend., vol. 30, no. 3, pp. 201–207, 2018.

M. PrabhuDas et al., “Immune mechanisms at the maternal-fetal interface: Perspectives and challenges,” Nature Immunology, vol. 16, no. 4. pp. 328–334, 2015, doi: 10.1038/ni.3131.

F. R. S. Prakoeswa et al., “Comparison of IL-17 and FOXP3+ Levels in Maternal and Children Leprosy Patients in Endemic and Nonendemic Areas,” Interdiscip. Perspect. Infect. Dis., vol. 2021, 2021, doi: 10.1155/2021/8879809.

S. Sadhu, B. K. Khaitan, B. Joshi, U. Sengupta, A. K. Nautiyal, and D. K. Mitra, “Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy,” PLoS Negl. Trop. Dis., vol. 10, no. 1, 2016, doi: 10.1371/journal.pntd.0004338.

C. Saini, M. Tarique, R. Rai, A. Siddiqui, N. Khanna, and A. Sharma, “T helper cells in leprosy: An update,” Immunology Letters, vol. 184. pp. 61–66, 2017, doi: 10.1016/j.imlet.2017.02.013.

V. P. Dwivedi et al., “Diet and nutrition: An important risk factor in leprosy,” Microb. Pathog., vol. 137, no. August, p. 103714, 2019, doi: 10.1016/j.micpath.2019.103714.

C. M. P. Vázquez et al., “Micronutrientes que influyen en la respuesta immune en la lepra,” Nutr. Hosp., vol. 29, no. 1, pp. 26–36, 2014, doi: 10.3305/nh.2014.29.1.6988.

N. Z. Gammoh and L. Rink, “Zinc in infection and inflammation,” Nutrients. 2017, doi: 10.3390/nu9060624.

S. Oktaria, N. S. Hurif, W. Naim, H. B. Thio, T. E. C. Nijsten, and J. H. Richardus, “Dietary diversity and poverty as risk factors for leprosy in Indonesia: A case-control study,” PLoS Negl. Trop. Dis., vol. 12, no. 3, 2018, doi: 10.1371/journal.pntd.0006317.

S. Chaitanya, M. Lavania, R. P. Turankar, S. R. Karri, and U. Sengupta, “Increased serum circulatory levels of interleukin 17F in type 1 reactions of leprosy,” J. Clin. Immunol., vol. 32, no. 6, pp. 1415–1420, 2012, doi: 10.1007/s10875-012-9747-3.




How to Cite

Prakoeswa, F. R. S., & Maharani, F. (2022). Peran Disregulasi Imunitas dalam Terapi Kusta pada Area Endemis: Artikel Review: The Role of Immune Dysregulation in Leprosy Treatment in Endemic Areas: Review Article. Jurnal Sains Dan Kesehatan, 4(1), 99–104.