The Role of Cathelicidin in Dermatology Skin

Authors

  • Diana Kurnia Apriani Faculty of Pharmacy, Padjadjaran University Bandung, Indonesia https://orcid.org/0009-0006-6550-9424
  • Reiva Farah Dwiyana Faculty of Pharmacy, Padjadjaran University Bandung, Indonesia
  • Anis Yohana Chaerunisaa Faculty of Pharmacy, Padjadjaran University Bandung, Indonesia https://orcid.org/0000-0002-4985-8206

DOI:

https://doi.org/10.25026/jsk.v6i1.1883

Abstract

Acne, Atopic Dermatitis, Psoriasis and Rosacea are examples of chronic inflammatory skin conditions. One characteristic of many skin disorders is the dysregulation of innate immunity in the skin. Acne, Atopic Dermatitis, Psoriasis, and Rosacea all have problems with the expression, function, or processing of the key innate immune effector molecule in the skin, cathelicidin LL-37. Cathelicidin induction can be altered to treat Acne and Atopic Dermatitis, which lessens the efficiency of the antimicrobial barrier. However, cathelicidin is overexpressed in Psoriasis and Rosacea. The most recent research on cathelicidin LL-37’s involvement in the etiology of inflammatory skin disorders will be included in this review. Since cathelicidin LL-37 may one day be employed as a therapeutic target, many cutting-edge therapy methods for the disease will be discussed.

Keywords:          Antimicrobial Peptide, Cathelicidin, Dermatology Skin

References

Dombrowski, Y., & Schauber, J., 2012. Cathelicidin LL-37: A defense molecule with a potential role in psoriasis pathogenesis. Experimental Dermatology, 21(5), 327–330.

Gläser, R., Harder, J., Dressel, S., Wittersheim, M., Cordes, J., Meyer-Hoffert, U., Mrowietz, U., Fölster-Holst, R., Proksch, E., Schröder, J. M., & Schwarz, T., 2010. Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. Journal of Investigative Dermatology, 130(5), 1355–1364.

Hancock, R. E. W., & Sahl, H. G., 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24(12), 1551–1557.

Comune, M., Rai, A., Chereddy, K. K., Pinto, S., Aday, S., Ferreira, A. F., Zonari, A., Blersch, J., Cunha, R., Rodrigues, R., Lerma, J., Simões, P. N., Préat, V., & Ferreira, L., 2017. Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. Journal of Controlled Release, 262(July), 58–71.

Bahar, A. A., & Ren, D., 2013. Antimicrobial peptides. Pharmaceuticals, 6(12), 1543–1575.

Gallo, R. L., & Hooper, L. V., 2012. Epithelial antimicrobial defence of the skin and intestine. Nature Reviews Immunology, 12(7), 503–516.

Ye, T., Wu, J., Xu, Z., Chai, J., Zeng, Q., Zeng, B., Gao, Y., Guo, R., Chen, X., & Xu, X., 2020. Esc-1GN shows therapeutic potentials for acne vulgaris and inflammatory pain. Journal of Peptide Science, 26(8), 1–9.

Wu, B. C., Lee, A. H.-Y., & Hancock, R. E. W., 2017. Mechanisms of the Innate Defense Regulator Peptide-1002 Anti-Inflammatory Activity in a Sterile Inflammation Mouse Model. The Journal of Immunology, 199(10), 3592–3603.

Nagaoka, I., Tamura, H., & Reich, J., 2020. Therapeutic potential of cathelicidin peptide ll-37, an antimicrobial agent, in a murine sepsis model. International Journal of Molecular Sciences, 21(17), 1–16.

Frew, L., Makieva, S., McKinlay, A. T. M., McHugh, B. J., Doust, A., Norman, J. E., Davidson, D. J., & Stock, S. J., 2014. Human cathelicidin production by the cervix. PLoS ONE, 9(8), 1–10.

Steiman, C. A., & Gern, J. E., 2017. Antimicrobials from Human Skin Commensal Bacteria Protect against Staphylococcus aureus and Are Deficient in Atopic Dermatitis. Pediatrics, 140(February), S205–S206.

Tokumaru, S., Sayama, K., Shirakata, Y., Komatsuzawa, H., Ouhara, K., Hanakawa, Y., Yahata, Y., Dai, X., Tohyama, M., Nagai, H., Yang, L., Higashiyama, S., Yoshimura, A., Sugai, M., & Hashimoto, K., 2005. Induction of Keratinocyte Migration via Transactivation of the Epidermal Growth Factor Receptor by the Antimicrobial Peptide LL-37. The Journal of Immunology, 175(7), 4662–4668.

Vandamme, D., Landuyt, B., Luyten, W., & Schoofs, L., 2012. A comprehensive summary of LL-37, the factoctum human cathelicidin peptide. Cellular Immunology, 280(1), 22–35.

Manuscript, A., 2014. NIH Public Access. 69(4), 570–577.

Moreno-Angarita, A., Aragón, C. C., & Tobón, G. J., 2020. Cathelicidin LL-37: A new important molecule in the pathophysiology of systemic lupus erythematosus. Journal of Translational Autoimmunity, 3(December 2019).

Scheenstra, M. R., van Harten, R. M., Veldhuizen, E. J. A., Haagsman, H. P., & Coorens, M., 2020. Cathelicidins Modulate TLR-Activation and Inflammation. Frontiers in Immunology, 11(June), 1–16.

Morizane, S., Yamasaki, K., Kotol, P. F., Aoyama, Y., Iwatsuki, K., Hata, T., Gallo, R. L., Diego, S., & Diego, S., 2012. HHS Public Access. 132(1), 135–143.

Filewod, N. C. J., Pistolic, J., & Hancock, R. E. W., 2009. Low concentrations of LL-37 alter IL-8 production by keratinocytes and bronchial epithelial cells in response to proinflammatory stimuli. FEMS Immunology and Medical Microbiology, 56(3), 233–240.

Li, N., Yamasaki, K., Saito, R., Fukushi-Takahashi, S., Shimada-Omori, R., Asano, M., & Aiba, S., 2014. Alarmin Function of Cathelicidin Antimicrobial Peptide LL37 through IL-36? Induction in Human Epidermal Keratinocytes. The Journal of Immunology, 193(10), 5140–5148.

Schauber, J., Dorschner, R. A., Coda, A. B., Büchau, A. S., Liu, P. T., Kiken, D., Helfrich, Y. R., Kang, S., Elalieh, H. Z., Steinmeyer, A., Zügel, U., Bikle, D. D., Modlin, R. L., & Gallo, R. L., 2007. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. Journal of Clinical Investigation, 117(3), 803–811.

Tayel, K., Attia, M., Agamia, N., & Fadl, N., 2020. Acne vulgaris: prevalence, severity, and impact on quality of life and self-esteem among Egyptian adolescents. Journal of the Egyptian Public Health Association, 95(1).

Hazarika, N., 2021. Acne vulgaris: new evidence in pathogenesis and future modalities of treatment. Journal of Dermatological Treatment, 32(3), 277–285.

El-Ramly, A. Z., Fawzi, M. M. T., Mahmoud, S. B., Abdel Ghaffar, M. M., & Shaker, O. G. (2016). Assessment of serum levels of cathelicidin and Vitamin D in acne vulgaris. Journal of the Egyptian Women’s Dermatologic Society, 13(2), 99–105.

Harder, J., Tsuruta, D., Murakami, M., & Kurokawa, I., 2013. What is the role of antimicrobial peptides (AMP) in acne vulgaris? Experimental Dermatology, 22(6), 386–391.

Wu, J., Guo, R., Chai, J., Xiong, W., Tian, M., Lu, W., & Xu, X., 2021. The Protective Effects of Cath-MH With Anti-Propionibacterium Acnes and Anti-Inflammation Functions on Acne Vulgaris. Frontiers in Pharmacology, 12(December), 1–11.

Liggins, M. C., Li, F., Zhang, L., Dokoshi, T., & Gallo, R. L., 2019. Retinoids Enhance the Expression of Cathelicidin Antimicrobial Peptide during Reactive Dermal Adipogenesis. The Journal of Immunology, 203(6), 1589–1597.

White, J. H., 2022. Emerging Roles of Vitamin D-Induced Antimicrobial Peptides in Antiviral Innate Immunity. Nutrients, 14(2).

Hayashi, N., Watanabe, H., Yasukawa, H., Uratsuji, H., Kanazawa, H., Ishimaru, M., Kotera, N., Akatsuka, M., & Kawashima, M., 2006. Comedolytic effect of topically applied active vitamin D3 analogue on pseudocomedones in the rhino mouse. British Journal of Dermatology, 155(5), 895–901.

Kang, B. S., Seo, J. G., Lee, G. S., Kim, J. H., Kim, S. Y., Han, Y. W., Kang, H., Kim, H. O., Rhee, J. H., Chung, M. J., & Park, Y. M., 2009. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. Journal of Microbiology, 47(1), 101–109.

Morizane, S., Yamasaki, K., Kabigting, F. D., & Gallo, R. L., 2010. Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D 3, and retinoic acid. Journal of Investigative Dermatology, 130(5), 1297–1306.

Zhang, L., Chen, S. X., Guerrero-juarez, C. F., Li, F., Liang, Y., Liggins, M., Chen, X., Chen, H., Li, M., Hata, T., Plikus, M. V, & Gallo, R. L., 2020. Dermal Fat Is Mediated by Transforming Growth Factor Beta. 50(1), 121–136.

Dokoshi, T., Zhang, L., Nakatsuji, T., Adase, C. A., Sanford, J. A., Paladini, R. D., Tanaka, H., Fujiya, M., & Gallo, R. L., 2018. Haluronidase Inhibits Adipogenesis. 3(21), 1–12.

Fujii, M., 2020. Current understanding of pathophysiological mechanisms of atopic dermatitis: Interactions among skin barrier dysfunction, immune abnormalities and pruritus. Biological and Pharmaceutical Bulletin, 43(1), 12–19.

Nakatsuji, T., & Gallo, R. L., 2019. The role of the skin microbiome in atopic dermatitis. Annals of Allergy, Asthma and Immunology, 122(3), 263–269.

Kraft, M. T., & Prince, B. T., 2019. Atopic Dermatitis Is a Barrier Issue, Not an Allergy Issue. Immunology and Allergy Clinics of North America, 39(4), 507–519.

Hata, T. R., Kotol, P., Boguniewicz, M., Taylor, P., Paik, A., Jackson, M., Nguyen, M., Kabigting, F., Miller, J., Gerber, M., Zaccaro, D., Armstrong, B., Dorschner, R., Leung, D. Y. M., & Gallo, R. L., 2010. History of eczema herpeticum is associated with the inability to induce human -defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. British Journal of Dermatology, 163(3), 659–661.

Nakatsuji, T., Cheng, J. Y., & Gallo, R. L., 2021. Mechanisms for control of skin immune function by the microbiome. Current Opinion in Immunology, 72, 324–330.

Mallbris, L., Carlén, L., Wei, T., Heilborn, J., Nilsson, M. F., Granath, F., & Ståhle, M., 2010. Injury downregulates the expression of the human cathelicidin protein hCAP18/LL-37 in atopic dermatitis. Experimental Dermatology, 19(5), 442–449.

Nakatsuji, T., Chen, T. H., Two, A. M., Chun, K. A., Narala, S., Geha, R. S., Hata, T. R., & Gallo, R. L. 2016. Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression. Journal of Investigative Dermatology, 136(11), 2192–2200.

Jensen, J. M., Ahrens, K., Meingassner, J., Scherer, A., Bräutigam, M., Stütz, A., Schwarz, T., Fölster-Holst, R., Harder, J., Gläser, R., & Proksch, E., 2011. Differential suppression of epidermal antimicrobial protein expression in atopic dermatitis and in EFAD mice by pimecrolimus compared to corticosteroids. Experimental Dermatology, 20(10), 783–788.

Hertting, O., Holm, Å., Lüthje, P., Brauner, H., Dyrdak, R., Jonasson, A. F., Wiklund, P., Chromek, M., & Brauner, A., 2010. Vitamin D induction of the human antimicrobial peptide cathelicidin in the urinary bladder. PLoS ONE, 5(12), 1–9.

Campbell, Y., Fantacone, M. L., & Gombart, A. F., 2012. Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism. European Journal of Nutrition, 51(8), 899–907.

Adams, J. S., & Hewison, M., 2012. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Archives of Biochemistry and Biophysics, 523(1), 95–102.

Wipt, P., & George, K. M., 2008. ?????NIH Public Access. Bone, 23(1), 1–7.

Lowry, M. B., Guo, C., Zhang, Y., Fantacone, M. L., Logan, I. E., Campbell, Y., Zhang, W., Le, M., Indra, A. K., Ganguli-Indra, G., Xie, J., Gallo, R. L., Koeffler, H. P., & Gombart, A. F., 2020. A mouse model for vitamin D-induced human cathelicidin antimicrobial peptide gene expression. Journal of Steroid Biochemistry and Molecular Biology, 198(November), 105552.

Herster, F., Bittner, Z., Archer, N. K., Dickhöfer, S., Eisel, D., Eigenbrod, T., Knorpp, T., Schneiderhan-Marra, N., Löffler, M. W., Kalbacher, H., Vierbuchen, T., Heine, H., Miller, L. S., Hartl, D., Freund, L., Schäkel, K., Heister, M., Ghoreschi, K., & Weber, A. N. R., 2020. Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nature Communications, 11(1).

Raharja, A., Mahil, S. K., & Barker, J. N., 2021. Psoriasis: A brief overview. Clinical Medicine, Journal of the Royal College of Physicians of London, 21(3), 170–173.

Boehncke, W., & Schön, M. P., 2015. Psoriasis. 983–994.

Yin, X., Low, H. Q., Wang, L., Li, Y., Ellinghaus, E., Han, J., Estivill, X., Weichenthal, M., Weidinger, S., Lieb, W., Foo, J. N., Li, Y., Sim, K., & Liany, H., 2015. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility.

Manuscript, A., 2012. NIH Public Access. 39(3), 225–230.

Peric, M., Koglin, S., Kim, S., Morizane, S., Besch, R., Prinz, C., Ruzicka, T., & Gallo, R. L., 2010. IL-17A Enhances Vitamin D 3 -Induced Expression of. The Journal of Immunology, 10.

Hwang, Y. J., Jung, H. J., Kim, M. J., Roh, N. K., Jung, J. W., Lee, Y. W., Choe, Y. B., & Ahn, K. J., 2014. Serum Levels of LL-37 and Inflammatory Cytokines in Plaque and Guttate Psoriasis. 2014.

Lande, R., Gregorio, J., Facchinetti, V., Chatterjee, B., Wang, Y. H., Homey, B., Cao, W., Wang, Y. H., Su, B., Nestle, F. O., Zal, T., Mellman, I., Schröder, J. M., Liu, Y. J., & Gilliet, M., 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 449(7162), 564–569.

Kandler, K., Shaykhiev, R., Kleemann, P., Klescz, F., Lohoff, M., Vogelmeier, C., & Bals, R., 2006. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. International Immunology, 18(12), 1729–1736.

Nestle, F. O., Conrad, C., Tun-Kyi, A., Homey, B., Gombert, M., Boyman, O., Burg, G., Liu, Y. J., & Gilliet, M., 2005. Plasmacytoid predendritic cells initiate psoriasis through interferon-? production. Journal of Experimental Medicine, 202(1), 135–143.

Nakajima, H., & Nakajima, K., 2011. Kinetics of circulating Th17 cytokines and adipokines in psoriasis patients. 451–455.

Wilson, N. J., Boniface, K., Chan, J. R., McKenzie, B. S., Blumenschein, W. M., Mattson, J. D., Basham, B., Smith, K., Chen, T., Morel, F., Lecron, J. C., Kastelein, R. A., Cua, D. J., McClanahan, T. K., Bowman, E. P., & Malefyt, R. de W., 2007. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunology, 8(9), 950–957.

Boniface, K., Guignouard, E., Pedretti, N., Garcia, M., Delwail, A., Bernard, F. X., Nau, F., Guillet, G., Dagregorio, G., Yssel, H., Lecron, J. C., & Morel, F., 2007. A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clinical and Experimental Immunology, 150(3), 407–415.

Furue, M., Furue, K., Tsuji, G., & Nakahara, T., 2020. Interleukin-17A and keratinocytes in psoriasis. International Journal of Molecular Sciences, 21(4), 1–21.

Ricceri, F., Pescitelli, L., Tripo, L., & Prignano, F., 2013. Deficiency of serum concentration of 25-hydroxyvitamin D correlates with severity of disease in chronic plaque psoriasis. Journal of the American Academy of Dermatology, 68(3), 511–512.

Mattozzi, C., Paolino, G., Richetta, A. G., & Calvieri, S., 2016. Psoriasis, Vitamin D and the importance of the cutaneous barrier’s integrity: An update. Journal of Dermatology, 43(5), 507–514.

Reinholz, M., Ruzicka, T., & Schauber, J., 2012. Vitamin D and its role in allergic disease. Clinical and Experimental Allergy, 42(6), 817–826.

Shahriari, M., Kerr, P. E., Slade, K., & Grant-Kels, J. E., 2010. Vitamin D and the skin. Clinics in Dermatology, 28(6), 663–668.

Kim, H. S., 2020. Microbiota in Rosacea. American Journal of Clinical Dermatology, 21(s1), 25–35.

Weng, Y. C., & Chen, Y. J., 2022. Skin microbiome in acne vulgaris , skin aging , and rosacea?: An evidence ? based review. 129–142.

Aktas, E., 2020. Dermatologia dermatoses?: acne vulgaris , rosacea , seborrheic. 95(2).

Hilbring, C., Mohr, N., Augustin, M., & Kirsten, N., 2022. Epidemiology of rosacea in a population-based study of. 570–576.

Yamasaki, K., Kanada, K., MacLeod, D. T., Borkowski, A. W., Morizane, S., Nakatsuji, T., Cogen, A. L., & Gallo, R. L., 2011. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. Journal of Investigative Dermatology, 131(3), 688–697.

Two, A., Shafiq, F., Yamasaki, K., & Harper, J. C., 2013. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel. Journal of American Dermatology, 69(4), 570–577.

Introduction, P. I., 2018. Rosacea. May 2015, 749–758.

Muto, Y., Wang, Z., Vanderberghe, M., Two, A., & Gallo, R. L., 2015. HHS Public Access. 134(11), 2728–2736.

Thibaut de Ménonville, S., Rosignoli, C., Soares, E., Roquet, M., Bertino, B., Chappuis, J. P., Defoin-PlatelChaussade, C., & Piwnica, D., 2017. Topical Treatment of Rosacea with Ivermectin Inhibits Gene Expression of Cathelicidin Innate Immune Mediators, LL-37 and KLK5, in Reconstructed and Ex Vivo Skin Models. Dermatology and Therapy, 7(2), 213–225.

Yamasaki, K., Nardo, A. Di, Bardan, A., Murakami, M., Ohtake, T., Coda, A., Dorschner, R. A., Bonnart, C., Descargues, P., Hovnanian, A., Morhenn, V. B., & Gallo, R. L., 2007. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. 13(8), 975–980.

Cardwell, L. A., Alinia, H., Moradi Tuchayi, S., & Feldman, S. R., 2016. New developments in the treatment of rosacea - Role of once-daily ivermectin cream. Clinical, Cosmetic and Investigational Dermatology, 9, 71–77.

Kanada, K. N., Nakatsuji, T., & Gallo, R. L., 2012. Doxycycline indirectly inhibits proteolytic activation of tryptic kallikrein-related peptidases and activation of cathelicidin. Journal of Investigative Dermatology, 132(5), 1435–1442.

Di Nardo, A., Holmes, A. D., Muto, Y., Huang, E. Y., Preston, N., Winkelman, W. J., & Gallo, R. L., 2016. Improved clinical outcome and biomarkers in adults with papulopustular rosacea treated with doxycycline modified-release capsules in a randomized trial. Journal of the American Academy of Dermatology, 74(6), 1086–1092.

Zhang, J., Jiang, P., Sheng, L., Liu, Y., Liu, Y., Li, M., Tao, M., Hu, L., Wang, X., Yang, Y., Xu, Y., & Liu, W., 2021. A Novel Mechanism of Carvedilol Efficacy for Rosacea Treatment: Toll-Like Receptor 2 Inhibition in Macrophages. Frontiers in Immunology, 12(July), 1–12.

Hsu, C.-C., & Yu-Yun Lee, J., 2015. ONLINE FIRST THE CUTTING EDGE: CHALLENGES IN MEDICAL AND SURGICAL THERAPIES Carvedilol for the Treatment of Refractory Facial Flushing and Persistent Erythema of Rosacea. 147(11), 1258–1260.

Sant, F. A., & Addor, A., 2016. Skin barrier in rosacea * 59. 91(1), 59–63.

Chen, Y., Moore, C. D., Zhang, J. Y., Hall, R. P., MacLeod, A. S., & Liedtke, W. (2017). TRPV4 Moves toward Center-Fold in Rosacea Pathogenesis. Journal of Investigative Dermatology, 137(4), 801–804.

Mascarenhas, N. L., Wang, Z., Chang, Y. L., & Di Nardo, A., 2017. TRPV4 Mediates Mast Cell Activation in Cathelicidin-Induced Rosacea Inflammation. Journal of Investigative Dermatology, 137(4), 972–975.

Downloads

Published

2024-02-29

How to Cite

Apriani, D. K., Dwiyana, R. F., & Chaerunisaa, A. Y. (2024). The Role of Cathelicidin in Dermatology Skin. Jurnal Sains Dan Kesehatan, 6(1), 172–182. https://doi.org/10.25026/jsk.v6i1.1883